Last updated: 2022-12-01

Checks: 7 0

Knit directory: SingleCellMR/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20221110) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d902176. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    analysis/downstream.nb.html
    Ignored:    analysis/figures.nb.html

Untracked files:
    Untracked:  analysis/DOWNSTREAM_RESULTS.Rmd
    Untracked:  analysis/eQTL_analysis.Rmd
    Untracked:  colossus/
    Untracked:  data/COLOC_MR_RESULTS/
    Untracked:  data/EXT_DATASETS/
    Untracked:  data/FIGURES/
    Untracked:  data/GWAS_STUDIES/
    Untracked:  data/MARKDOWN/
    Untracked:  data/METADATA/
    Untracked:  data/TABLES/
    Untracked:  data/derby.log
    Untracked:  data/eQTL_RESULTS/
    Untracked:  data/helper_files/
    Untracked:  data/logs/
    Untracked:  derby.log
    Untracked:  logs/

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/figures.Rmd) and HTML (docs/figures.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d902176 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 7389e87 Alexander Haglund 2022-12-01 Build site.
Rmd 8db15db Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html dbf14b0 Alexander Haglund 2022-12-01 Build site.
Rmd 7b58517 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 0f7883c Alexander Haglund 2022-12-01 Build site.
Rmd ed4677c Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html bb50a67 Alexander Haglund 2022-12-01 Build site.
Rmd 5587527 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 10dd725 Alexander Haglund 2022-12-01 Build site.
Rmd 0758ce5 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html dd4ab87 Alexander Haglund 2022-12-01 Build site.
Rmd 762caf0 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 8f21a16 Alexander Haglund 2022-12-01 Build site.
Rmd a155fea Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html babc9f5 Alexander Haglund 2022-12-01 Build site.
Rmd 6966b34 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 3c46f4b Alexander Haglund 2022-12-01 Build site.
Rmd 4b93157 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html fd90855 Alexander Haglund 2022-12-01 Build site.
Rmd 8a35089 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 016f567 Alexander Haglund 2022-12-01 Build site.
Rmd 4639838 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 43e9b1f Alexander Haglund 2022-12-01 Build site.
Rmd ad8d30b Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 3c08408 Alexander Haglund 2022-12-01 Build site.
Rmd 9aafc1c Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 3f6c35b Alexander Haglund 2022-12-01 Build site.
Rmd 2fd70c5 Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 4fcf3ea Alexander Haglund 2022-12-01 Build site.
Rmd eacb4eb Alexander Haglund 2022-12-01 wflow_publish(c("analysis/figures.Rmd"))
html 597c47b Alexander Haglund 2022-11-18 Build site.
html 8f071f3 Alexander Haglund 2022-11-18 Build site.
Rmd 38a3835 Alexander Haglund 2022-11-18 wflow_publish(c("analysis/index.Rmd", "analysis/figures.Rmd"))

libraries

library(ggplot2)
library(viridis)
library(ggsci)
library(dplyr)
library(cowplot)
library(grid)
library(tidyr)
suppressMessages(library(reshape))
color_pal=ggsci::pal_nejm("default")(8)
colorvec<-c(Astrocytes=color_pal[1],
           Endothelial=color_pal[2],
           Excitatory=color_pal[3],
           Inhibitory=color_pal[4],Microglia=color_pal[5],
           ODC=color_pal[6],OPC=color_pal[7],Pericytes=color_pal[8])

FIGURE 1

coming soon

FIGURE 2

Figure 2a

coloc<-read.table("data/COLOC_MR_RESULTS/2022-10-25_FULL_COLOC_RES.txt")
x<-coloc[coloc$GWAS %in% "AD",]



genes<-x[x$PP.H4.abf>0.5,]$gene
x<-x[x$gene %in% genes,]
x$gene<-factor(x$gene,levels=unique(x$gene))

g<-ggplot(x,aes(x=celltype,y=gene,fill=PP.H4.abf))
g<-g+geom_tile(aes(fill=round(PP.H4.abf,2)),colour="black")+
geom_text(aes(label = round(PP.H4.abf, 2)),size=5*0.36,family="Helvetica")+
scale_fill_viridis()+
theme_classic()+
scale_y_discrete(limits=rev,expand = c(0, 0))+
scale_x_discrete(expand = c(0, 0),position="top")+
xlab("Alzheimer's Disease")
g

Version Author Date
8f071f3 Alexander Haglund 2022-11-18

Figure 2b

coming soon

Figure 2c

coming soon

Figure 2d

coloc_results<-read.table("data/COLOC_MR_RESULTS/2022-10-25_FULL_COLOC_RES.txt")
fig_dir<-"FIGURES/Figure_2/"

coloc_results<-coloc_results[coloc_results$PP.H4.abf>0.5,]


g<-ggplot(coloc_results,aes(y=GWAS))+geom_bar(color="black",fill="#166FA2")+
geom_text(aes(label=..count..),stat="count",hjust=-0.8,size=5/(14/5))+
labs(x="Number of colocalisations")+
theme_classic()+scale_x_continuous(limits=c(0,120),expand = c(0, 0))+
theme(text=element_text(family="Helvetica",face="bold"),
                                             axis.text.x=element_text(size=5,face="bold"),
                                            axis.text.y=element_text(size=5),
     axis.title.x=element_text(size=5),axis.title.y=element_text(size=5))
g

Version Author Date
3f6c35b Alexander Haglund 2022-12-01

Figure 2e

coloc<-read.table("data/COLOC_MR_RESULTS/2022-10-25_FULL_COLOC_RES.txt")
##rename SCV caudate for spacing
coloc_results$GWAS<-sapply(coloc_results$GWAS,function(x){
    if(x=="SCV.CAUDATE"){
        x<-"SCV"}
    return(x)})

##filter to keep coloc hits
coloc_results_filtered<-coloc_results[coloc_results$PP.H4.abf>0.5,]


gwas_list<-unique(coloc_results_filtered$GWAS)
reslist<-list()

##count number of cell types per trait
for(i in 1:length(gwas_list)){
    tmp<-coloc_results_filtered %>% filter(GWAS==gwas_list[i])
    freq_table<-as.data.frame(table(tmp$celltype))
    tmp$celltype_freq<-freq_table[match(tmp$celltype,freq_table$Var1),]$Freq

    #scale by total number of colocs (otherwise larger gwases will have really large points)
    # tmp$celltype_freq<-tmp$celltype_freq/nrow(tmp)
    reslist[[i]]<-tmp
    }
coloc_results_filtered<-as.data.frame(do.call(rbind,reslist))

color_pal=ggsci::pal_nejm("default")(8)
g<-ggplot(coloc_results_filtered,aes(y=GWAS,x=celltype,size=celltype_freq,fill=celltype))+
geom_point(pch=21)+
scale_size(range=c(1,3))+
# geom_text(aes(label=celltype_freq),size=5/(14/5),vjust=-1.1)+
theme_classic()+
scale_fill_manual(values=color_pal)+
theme(text=element_text(family="Helvetica",face="bold"),
                                             axis.text.x=element_text(size=5,angle=45),
                                            axis.text.y=element_text(size=5),
     axis.title.x=element_text(size=5),axis.title.y=element_text(size=5),
      legend.text=element_text(size=5),legend.title=element_text(size=5),
      legend.spacing.y = unit(0.05, 'cm'),legend.position = "none")
g

Version Author Date
4fcf3ea Alexander Haglund 2022-12-01
8f071f3 Alexander Haglund 2022-11-18

FIGURE 3

The code presented here is in step 5 (Epigenetic Intersection) of the downstream results section. The basic syntax is a geom_tile() function in ggplot with colours matching cell-types. More in data/MARKDOWN/helper_funcs.r

This is only for Fig 3.a - Fig 3.c and Fig 3.d were made using the UCSC track browser.

indir<-"data/EXT_DATASETS//RESULTS/"
fig_dir<-"FIGURES/Figure_3/"

g1<-readRDS(paste0(indir,"oligo_intersect_ggobject.rds"))
g2<-readRDS(paste0(indir,"Excneuron_intersect_ggobject.rds"))
g3<-readRDS(paste0(indir,"Inneuron_intersect_ggobject.rds"))
g4<-readRDS(paste0(indir,"microglia_intersect_ggobject.rds"))

g1<-g1+theme(legend.position = "none")
g2<-g2+theme(legend.position = "none")
g3<-g3+theme(legend.position = "none")
g4<-g4+theme(legend.position = "none")

Oligo

g1

Version Author Date
4fcf3ea Alexander Haglund 2022-12-01
8f071f3 Alexander Haglund 2022-11-18

ExcNeur

g2

Version Author Date
4fcf3ea Alexander Haglund 2022-12-01
8f071f3 Alexander Haglund 2022-11-18

InNeur

g3

Version Author Date
4fcf3ea Alexander Haglund 2022-12-01

Microglia

g4

Version Author Date
4fcf3ea Alexander Haglund 2022-12-01

FIGURE 4

Figure 4a

bind data together

#bind data together

pqtl<-read.table("data/TABLES/pQTL_table.txt")
stitch<-read.table("data/TABLES//stitch_table.txt")
dgidb<-read.table("data/TABLES/dgidb_table.txt")
opentargets<-read.table("data/TABLES/OpenTargets_table.txt")
coloc<-read.table("data/COLOC_MR_RESULTS//2022-10-25_FULL_COLOC_RES.txt")
full<-read.table("data/COLOC_MR_RESULTS//2022-10-25_FULL_MR_RES.txt")
full<-full[full$IVW<0.05,]
full$trait_gene<-paste0(full$GWAS,"_",full$gene)
full$IVW_dir<-sapply(full$IVW_beta,function(x){
    if(x>0){
        return("positive")
        }else{
        return("negative")
        }
    })
direction_vector<-vector()
for(i in 1:nrow(full)){
    tmp<-full[full$trait_gene %in% full$trait_gene[i],]
    betas<-tmp$IVW_beta
    
    if(all(betas>0)==TRUE){
    dir<-"positive"
    } else if(all(betas<0)==TRUE){
    dir<-"negative"
    }else{
        dir<-"N/A"
        }
    direction_vector<-c(direction_vector,dir)    
        }
full$IVW_dir<-direction_vector    


coloc$trait_gene_ct<-paste0(coloc$GWAS,"_",coloc$gene,"_",coloc$celltype)
trait_gene_ct<-paste0(pqtl$GWAS,"_",pqtl$gene,"_",pqtl$celltype)
coloc<-coloc[match(trait_gene_ct,coloc$trait_gene_ct),]

plot_df<-data.frame(gene_trait=paste0(pqtl$GWAS,".",pqtl$gene),
                    pQTL=pqtl$pQTL_hit,
                    STITCH=stitch$STITCH_intersect,
                    DGidb=dgidb$DGIDB_intersect,
                    OpenTargets=opentargets$OpenTargets_disease_hit,
                   coloc=coloc$PP.H4.abf,
                   celltype=pqtl$celltype,
                   IVW_dir=full$IVW_dir)

prep plots

##intersection plot
plot_df1<-plot_df[,c("gene_trait","pQTL","STITCH","DGidb","OpenTargets")]
melt_df<-melt(plot_df1,id=c("gene_trait"))
ggplot_mainplot1<-ggplot(melt_df,aes(x=variable,y=gene_trait,fill=value))+geom_tile(color="black")+
scale_fill_manual(values=c("#c8c8c8","#A6CEE3","#1F78B4"))+scale_x_discrete(expand=c(0,0))

##direction
ivw_dir<-plot_df[,c("gene_trait","IVW_dir")]
ivw_dir$trait<-"gwas"
ivw_dir1<-ivw_dir
ggplot_ivwdir1<-ggplot(ivw_dir1,aes(y=gene_trait,x=trait,fill=IVW_dir,group=IVW_dir))+geom_tile(colour="black")+
scale_fill_manual(values = c("#c8c8c8","#F8766D","#00BFC4"),guide = guide_legend(reverse = TRUE))+
theme_classic()

##celltypes

celltype_bar<-plot_df[,c("gene_trait","celltype")]
celltype_bar1<-celltype_bar
test<-celltype_bar1 %>% 
count(gene_trait,celltype,name="count") %>% 
complete(gene_trait,celltype)
newvec<-vector()
for(i in 1:nrow(test)){
    if(is.na(test$count[i])){
        newvec<-c(newvec,NA)
        }else{
        newvec<-c(newvec,test$celltype[i])
        }
    }
test$new<-newvec
# melt_df<-melt(celltype_bar1,id=c("gene_trait"))
# df2 = celltype_bar1 %>% complete(gene_trait,celltype)
ggplot_celltype1<-ggplot(test,aes(x=celltype,y=gene_trait,fill=new))+geom_tile(color="black")+
scale_fill_manual(values=colorvec,na.value="white")

plot

ggplot_mainplot1<-ggplot_mainplot1+theme_classic()+
theme(axis.text.x=element_text(size=5,face="bold",angle=45,vjust=0.8,hjust=0.8,family="Helvetica"),
      axis.text.y=element_text(size=5,face="bold",vjust=0.8,family="Helvetica"),axis.title.y=element_blank(),
      axis.line.y=element_blank(),axis.line.x=element_blank(),
      axis.title.x=element_blank(),legend.key.size=unit(0.7,"cm"),
      legend.title=element_blank(),
      legend.text=element_text(size=5),
      panel.background = element_rect(fill='transparent'),
      plot.background = element_rect(fill='transparent', color=NA),
      panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
      legend.background = element_rect(fill='transparent'),
      legend.key.height= unit(0.3, 'cm'),
      legend.key.width= unit(0.2, 'cm'))#

ggplot_ivwdir1<-ggplot_ivwdir1+theme_classic()+
theme(axis.text.x=element_blank(),
      axis.text.y=element_blank(),axis.title.y=element_blank(),axis.ticks.y=element_blank(),
      axis.ticks.x=element_blank(),
      axis.line.y=element_blank(),axis.line.x=element_blank(),
      axis.title.x=element_blank(),legend.key.size=unit(0.7,"cm"),
      legend.text=element_text(size=5), legend.title=element_text(size=5),
      panel.background = element_rect(fill='transparent'),
      plot.background = element_rect(fill='transparent', color=NA),
      legend.background = element_rect(fill='transparent'),
      legend.key.height= unit(0.3, 'cm'),
      legend.key.width= unit(0.2, 'cm'))#


ggplot_celltype1<-ggplot_celltype1+theme_classic()+
theme(axis.text.x=element_text(size=5,face="bold",angle=45,vjust=0.8,hjust=0.8,family="Helvetica"),
      axis.text.y=element_blank(),axis.title.y=element_blank(),axis.ticks.y=element_blank(),
      axis.line.y=element_blank(),axis.line.x=element_blank(),
      axis.title.x=element_blank(),legend.key.size=unit(0.7,"cm"),
      legend.title=element_blank(),
      legend.text=element_text(size=5),
      panel.background = element_rect(fill='transparent'),
      plot.background = element_rect(fill='transparent', color=NA),
      legend.background = element_rect(fill='transparent'),
      legend.key.height= unit(0.3, 'cm'),
      legend.key.width= unit(0.2, 'cm'))#

ggplot_mainplot1_legend<-get_legend(ggplot_mainplot1)
celltype_legend<-get_legend(ggplot_celltype1)
ivw_dir<-get_legend(ggplot_ivwdir1)


ggplot_ivwdir1<-ggplot_ivwdir1+theme(plot.margin = unit(c(0,0,0,0), "cm"),legend.position = "none")
ggplot_mainplot1<-ggplot_mainplot1+theme(plot.margin = unit(c(0,0,0,0), "cm"),legend.position = "none")
ggplot_celltype1<-ggplot_celltype1+theme(plot.margin = unit(c(0,0,0,0), "cm"),legend.position="none")

g<-plot_grid(ggplot_mainplot1,ggplot_celltype1,ggplot_ivwdir1, align = "h", ncol =3, rel_widths = c(0.008,0.005,0.001))
g

Version Author Date
3c08408 Alexander Haglund 2022-12-01
4fcf3ea Alexander Haglund 2022-12-01
8f071f3 Alexander Haglund 2022-11-18

Figure 4b

suppressMessages(library(UpSetR))
library(dplyr)
suppressMessages(library(ComplexUpset))
library(tidyr)

color_pal=ggsci::pal_nejm("default")(8)
colorvec<-c(Astrocytes=color_pal[1],
           Endothelial=color_pal[2],
           Excitatory=color_pal[3],
           Inhibitory=color_pal[4],Microglia=color_pal[5],
           ODC=color_pal[6],OPC=color_pal[7],Pericytes=color_pal[8])
full<-read.table("data/COLOC_MR_RESULTS//2022-10-25_FULL_MR_RES.txt")
gwas<-unique(full$GWAS)
genes<-unique(full$gene)

resdf<-data.frame(gene=genes)
for(i in 1:length(gwas)){
    tmp_genes<-full[full$GWAS==gwas[i],]$gene
    resdf<-cbind(resdf,genes %in% tmp_genes)
}
rownames(resdf)<-resdf$gene
resdf$gene<-NULL
colnames(resdf)<-gwas

plot<-upset(resdf,gwas,width_ratio=0.1,height_ratio = 0.4,set_size=FALSE,
      themes=upset_default_themes(text=element_text(size=6,family="Helvetica")),
      base_annotations=list(
          'Intersection size'=intersection_size(color="#000000",size=0.25,
              mapping=aes(fill="bars_color"),
            text=list(size=5/(14/5),family="Helvetica"))
            +scale_fill_manual(values=c("bars_color"="#1F78B4"),guide="none")
          +theme(plot.background=element_blank(),
          panel.grid.major = element_blank(), 
          panel.grid.minor = element_blank())),
      stripes="white",matrix=(
        intersection_matrix(
            geom=geom_point(size=0.5),
            segment=geom_segment(size=0.3)
            ))
      )

plot

Version Author Date
43e9b1f Alexander Haglund 2022-12-01
3c08408 Alexander Haglund 2022-12-01
4fcf3ea Alexander Haglund 2022-12-01
8f071f3 Alexander Haglund 2022-11-18

SUPPLEMENTARY FIGURES

Suppl. Fig. 1

Suppl. Fig. 1a

metadata<-readRDS("data/METADATA/Final_Seurat_129samples_15May2022_metadata.rds")

##this sample was excluded earlier
metadata<-metadata[!metadata$Sample_ID %in% "O141",]

samples<-unique(metadata$Sample_ID)
df<-data.frame(samples=samples,new_id=1:length(samples))
metadata$new_id<-paste0("Sample ",as.character(df[match(metadata$Sample_ID,df$samples),]$new_id))
metadata$new_id<-factor(metadata$new_id, levels =unique(metadata$new_id))

tmp<-metadata
color_panel<-ggsci::pal_nejm("default")(8)
p<-ggplot(tmp,aes(x=new_id,fill=CellType))+geom_bar(color="black")+
scale_fill_manual(values=color_panel)+
scale_y_continuous(expand=c(0,0))+
theme_classic()+theme(axis.text.x=element_text(size=5,face="bold",angle=90),
                      plot.title = element_text(size=5,face="bold"),
                                  axis.text.y=element_text(size=5,face="bold"),
                                  axis.title.y=element_blank(),
                                 axis.title.x=element_blank(),
                                                 legend.key.size=unit(0.7,"cm"),
                      legend.position="none",

                                                                legend.text=element_text(size=15),panel.background = element_rect(fill='transparent'), #transparent panel bg
    plot.background = element_rect(fill='transparent', color=NA), #transparent plot bg
    panel.grid.major = element_blank(), #remove major gridlines
    panel.grid.minor = element_blank(), #remove minor gridlines
    legend.background = element_rect(fill='transparent'), #transparent legend bg
    legend.box.background = element_rect(fill='transparent'))+labs(title="Cell type distribution per indiviudal")
p

Version Author Date
3c46f4b Alexander Haglund 2022-12-01
016f567 Alexander Haglund 2022-12-01
43e9b1f Alexander Haglund 2022-12-01
3c08408 Alexander Haglund 2022-12-01
4fcf3ea Alexander Haglund 2022-12-01
8f071f3 Alexander Haglund 2022-11-18

Suppl. Fig. 1b

library(ggrepel)
metadata<-readRDS("data/METADATA/Final_Seurat_129samples_15May2022_metadata.rds")
metadata<-metadata[!metadata$Sample_ID %in% "O141",]
df<-as.data.frame(table(metadata$CellType))
df$celltype<-df$Var1
library(dplyr)
df2 <- df %>% 
  mutate(csum = rev(cumsum(rev(Freq))), 
         pos =Freq/2 + lead(csum, 1),
         pos = if_else(is.na(pos), Freq/2, pos))

p<-ggplot(df, aes(x="",y=Freq,fill=celltype)) +
  geom_bar(stat="identity",colour="black",width=1)+
geom_label_repel(data = df2,
                   aes(y = pos, label = Freq),
                   size = 5/(14/5), nudge_x = 1, show.legend = FALSE)+
theme_classic()+theme(axis.text.x=element_blank(),
                      axis.line=element_blank(),
                      plot.title = element_text(size=7,face="bold"),
                                  axis.text.y=element_blank(),
                                  axis.title.y=element_blank(),
                                 axis.title.x=element_blank(),
                                                 legend.key.size=unit(0.7,"cm"),
                                                 legend.position="none",
                                                                legend.text=element_text(size=5),panel.background = element_rect(fill='transparent'), #transparent panel bg
    plot.background = element_rect(fill='transparent', color=NA), #transparent plot bg
    panel.grid.major = element_blank(), #remove major gridlines
    panel.grid.minor = element_blank(), #remove minor gridlines
    legend.background = element_rect(fill='transparent'), #transparent legend bg
    legend.box.background = element_rect(fill='transparent'))+labs(title="Total number of cells per cell type")+
ggsci::scale_fill_nejm()+ coord_polar("y", start=0)
p

Version Author Date
8f21a16 Alexander Haglund 2022-12-01
016f567 Alexander Haglund 2022-12-01
43e9b1f Alexander Haglund 2022-12-01
3c08408 Alexander Haglund 2022-12-01
4fcf3ea Alexander Haglund 2022-12-01
8f071f3 Alexander Haglund 2022-11-18

Suppl. Fig. 2

res<-read.table("data/EXT_DATASETS/METABRAIN//metabrain_replication.txt")
res$celltype<-c("Astrocytes","Endothelial","Excitatory","Inhibitory","Microglia","Oligo","OPC","Pericytes")
color_plane_1=ggsci::pal_nejm("default")(8)
colnames(res)<-c("total","replicated","percentage","totalinboth","celltype")
g<-ggplot()+
geom_point(res,mapping=aes(x=total,y=percentage,fill=celltype),size=2,shape=21)+
scale_fill_manual(values=c("Astrocytes"=color_plane_1[1],
"Endothelial"=color_plane_1[2],
"Excitatory"=color_plane_1[3],
"Inhibitory"=color_plane_1[4],
"Microglia"=color_plane_1[5],
"Oligo"=color_plane_1[6],
"OPC"=color_plane_1[7],
"Pericytes"=color_plane_1[8]))+
ylab("Percentage replication in metabrain")+
xlab("Total SNP gene pairs at 5% FDR\nalso assessed in metabrain")+
scale_y_continuous(breaks = scales::pretty_breaks(n = 10),limits=c(0,1),labels = function(x) paste0(x*100, "%"))+
                   scale_x_continuous(breaks = scales::pretty_breaks(n = 7))+
                  theme_classic()+theme(axis.text.x=element_text(size=5,family="Helvetica",angle=45,vjust=0.6,face="bold"),
                                  axis.text.y=element_text(size=5,family="Helvetica",face="bold"),
                                  axis.title.y=element_text(size=6,family="Helvetica",margin=margin(r=20),face="bold"),
                                 axis.title.x=element_text(size=6,family="Helvetica",margin=margin(t=20),face="bold"),
                                                 legend.key.size=unit(0.25,"cm"),
                                                 # legend.position="none",
                                                                legend.text=element_text(size=5),legend.title=element_blank())
g

Version Author Date
dd4ab87 Alexander Haglund 2022-12-01
fd90855 Alexander Haglund 2022-12-01
43e9b1f Alexander Haglund 2022-12-01
3c08408 Alexander Haglund 2022-12-01
4fcf3ea Alexander Haglund 2022-12-01

Suppl. Fig. 3

coloc_df<-read.table("data/COLOC_MR_RESULTS//2022-10-25_FULL_COLOC_RES.txt")
coloc_list<-split(coloc_df,coloc_df$GWAS)

heatmap_list<-list()
size_vector<-vector()
for(i in 1:length(coloc_list)){
    
    x<-coloc_list[[i]]
    if(length(x[x$PP.H4.abf>0.5,]$gene)==0){
       heatmap_list[[i]]<-0
        size_vector<-c(size_vector,0)
    }else{
    genes<-x[x$PP.H4.abf>0.5,]$gene
    x<-x[x$gene %in% genes,]
    x$Gene<-factor(x$gene,levels=unique(x$gene))
    g<-ggplot(x,aes(x=celltype,y=Gene,fill=PP.H4.abf))
    h1<-g+geom_tile(aes(fill=round(PP.H4.abf,2)),colour="black")+geom_text(aes(label = round(PP.H4.abf, 2)),size=5*0.36,family="Helvetica")+
        scale_fill_viridis(limits=c(0,1))+
    theme_classic()+scale_y_discrete(limits=rev)+scale_x_discrete(position="top")+xlab(x$GWAS[1])+
        theme(axis.text.x=element_text(size=5,family="Helvetica",face="bold"),
        axis.text.y=element_text(size=5,family="Helvetica"),
        axis.title=element_text(size=7,family="Helvetica"),
              legend.position="none")
        
   heatmap_list[[i]]<-h1
        
    size_vector<-c(size_vector,length(unique(genes)))
        }
    }
names(heatmap_list)<-unique(coloc_df$GWAS)
options(warn=-1)
for(i in 1:length(heatmap_list)){
    if(class(heatmap_list[[i]])!="numeric"){
      print(heatmap_list[[i]])
    }
}

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01
3c46f4b Alexander Haglund 2022-12-01
fd90855 Alexander Haglund 2022-12-01
016f567 Alexander Haglund 2022-12-01
43e9b1f Alexander Haglund 2022-12-01
3c08408 Alexander Haglund 2022-12-01
4fcf3ea Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Version Author Date
7389e87 Alexander Haglund 2022-12-01
bb50a67 Alexander Haglund 2022-12-01
10dd725 Alexander Haglund 2022-12-01

Suppl. Fig. 4

mateqtlouts<-readRDS("data/eQTL_RESULTS//mateqtlouts_0.2FDR.rds")

mateqtlouts<-lapply(mateqtlouts,function(x){
  x$fstat=x$t.stat^2
  return(x)})

scientific_10 <- function(x) {
  parse(text=gsub("e", ".00 %*% 10^", scales::scientific_format(digits = 3)(x)))
}

library(ggplot2)
for(i in 1:length(mateqtlouts)){
    
    tmp<-mateqtlouts[[i]]
    title<-names(mateqtlouts[i])
    title<-gsub("_agg_cpm","",title)
    if(title=="Oligo"){
        title<-"ODC"
        }else if(title=="Endo"){
        title<-"Endothelial"
        }else if(title=="Per"){
        title<-"Pericytes"
        }else if(title=="Astro"){
        title<-"Astrocytes"
        }

    tmp<-tmp[tmp$FDR<0.05,]
    g<-ggplot(data=tmp,aes(x=fstat))+
    geom_line(aes(y=FDR,color="FDR"),size=0.5)+
    geom_line(aes(y=p.value,color="pvalue"),size=0.5)+
    scale_color_manual(values = c("FDR"="red", "pvalue"="blue"))+
    scale_y_continuous(trans="log10",breaks=c(5e-2,5e-5,5e-10,5e-20),labels=scientific_10)+
    theme_classic()+ggtitle(title)+
    xlab("F-statistic")+
    geom_vline(xintercept = 10,linetype="dashed",color="black")+theme(text = element_text(family="Helvetica",size=5),axis.title.y=element_blank(),
                                                                      axis.text.y=element_text(family="Helvetica",size=6),
                                                                      axis.text.x=element_text(family="Helvetica",size=6),
                                                                     legend.title=element_text(family="Helvetica",size=7),
                                                                      legend.text=element_text(family="Helvetica",size=6))
    print(g)
}

Version Author Date
10dd725 Alexander Haglund 2022-12-01
8f21a16 Alexander Haglund 2022-12-01
3c46f4b Alexander Haglund 2022-12-01

Version Author Date
10dd725 Alexander Haglund 2022-12-01

Version Author Date
10dd725 Alexander Haglund 2022-12-01

Version Author Date
10dd725 Alexander Haglund 2022-12-01

Version Author Date
10dd725 Alexander Haglund 2022-12-01

Version Author Date
10dd725 Alexander Haglund 2022-12-01

Version Author Date
10dd725 Alexander Haglund 2022-12-01

Version Author Date
10dd725 Alexander Haglund 2022-12-01

Suppl. Fig. 5

Suppl. Fig. 5a

full<-read.table("data/COLOC_MR_RESULTS//2022-10-25_FULL_MR_RES.txt")
full$celltype_gene<-paste0(full$celltype,".",full$gene)
scz<-full[full$GWAS=="SCZ",]
iq<-full[full$GWAS=="IQ",]
common<-intersect(iq$celltype_gene,scz$celltype_gene)

#remove ct/gene combinations in other traits - we are only interested in the SCZ/IQ overlap
filtered<-full[full$celltype_gene %in% common,]
filtered<-filtered[!filtered$GWAS %in% c("SCZ","IQ"),]
to_exclude<-unique(filtered$celltype_gene)
common<-common[!common %in% to_exclude]



#filter both
scz<-scz[match(common,scz$celltype_gene),]
iq<-iq[match(common,iq$celltype_gene),]
df<-data.frame(celltype_gene=common,IQ=iq$IVW_beta,SCZ=scz$IVW_beta)


##now plot
ylims=c(-0.2,0.2)
xlims=c(-0.7,0.7)

g<-ggplot(df,aes(x=SCZ,y=IQ,fill=celltype_gene))+
geom_point(shape=21,size=2)+
scale_y_continuous(limits=ylims)+
scale_x_continuous(limits=xlims)+
geom_vline(xintercept =0,linetype="dashed",size=0.3)+
geom_hline(yintercept =0,linetype="dashed",size=0.3)+theme_classic()+
theme(text=element_text(size=5,family="Helvetica"),legend.title=element_blank(),
      axis.text.y=element_text(size=5,family="Helvetica"),axis.text.x=element_text(size=5,family="Helvetica"),
      legend.text = element_text(family="Helvetica",size=5,face="bold"),legend.spacing.y = unit(-1, 'cm'))+
xlab("SCZ - MR beta")+ylab("IQ - MR beta")+
guides(fill = guide_legend(byrow = TRUE))
g

Version Author Date
0f7883c Alexander Haglund 2022-12-01

Suppl. Fig. 5b

full<-read.table("data/COLOC_MR_RESULTS//2022-10-25_FULL_MR_RES.txt")
full$celltype_gene<-paste0(full$celltype,".",full$gene)
scz<-full[full$GWAS=="SCZ",]
neur<-full[full$GWAS=="NEUR",]
common<-intersect(neur$celltype_gene,scz$celltype_gene)

filtered<-full[full$celltype_gene %in% common,]
filtered<-filtered[!filtered$GWAS %in% c("SCZ","NEUR"),]
to_exclude<-unique(filtered$celltype_gene)
common<-common[!common %in% to_exclude]


#filter both
scz<-scz[match(common,scz$celltype_gene),]
neur<-neur[match(common,neur$celltype_gene),]
df<-data.frame(celltype_gene=common,NEUR=neur$IVW_beta,SCZ=scz$IVW_beta)


##now plot
ylims=c(-0.2,0.2)
xlims=c(-0.8,0.8)

g<-ggplot(df,aes(x=SCZ,y=NEUR,fill=celltype_gene))+
geom_point(shape=21,size=2)+
scale_y_continuous(limits=ylims)+
scale_x_continuous(limits=xlims)+
geom_vline(xintercept =0,linetype="dashed",size=0.3)+
geom_hline(yintercept =0,linetype="dashed",size=0.3)+theme_classic()+
theme(text=element_text(size=5,family="Helvetica"),legend.title=element_blank(),
      axis.text.y=element_text(size=5,family="Helvetica"),axis.text.x=element_text(size=5,family="Helvetica"),
      legend.text = element_text(family="Helvetica",size=5,face="bold"),legend.spacing.y = unit(-1, 'cm'))+
xlab("SCZ - MR beta")+ylab("NEUR - MR beta")+guides(fill = guide_legend(byrow = TRUE))
g

Version Author Date
0f7883c Alexander Haglund 2022-12-01

Suppl. Fig. 5c

full<-read.table("data/COLOC_MR_RESULTS//2022-10-25_FULL_MR_RES.txt")
full<-full[full$IVW<0.05,]
tmp<-full
df<-data.frame()
for(i in 1:length(unique(tmp$GWAS))){
    gwas<-unique(tmp$GWAS)[i]
    tmp_df<-tmp[grep(gwas,tmp$GWAS),]
    cellvec<-as.vector(table(tmp_df$celltype))
    df<-rbind(df,data.frame(gwas=gwas,celltype=names(table(tmp_df$celltype)),occurrence=cellvec))
}

g<-ggplot(data=df,aes(y=occurrence,x=gwas,fill=celltype))+geom_bar(stat="identity",colour="black")
g<-g+geom_text(aes(label=occurrence),family="Helvetica",size=5*0.36, position = position_stack(vjust = 0.5))+
scale_fill_manual(values=color_pal)+theme_classic()+
scale_y_continuous(expand = c(0, 0))+
theme(axis.text.x=element_text(size=5,face="bold",angle=45,vjust=0.01),
                                  axis.text.y=element_text(size=5,face="bold"),
                                  axis.title.y=element_text(size=7,face="bold",margin=margin(r=20)),
                                 axis.title.x=element_text(size=7,face="bold",margin=margin(t=20)),
                                                 legend.key.size=unit(0.7,"cm"),
                                                                legend.text=element_text(size=5),
     title=element_text(size=7,face="bold"),
panel.background = element_rect(fill='transparent'), #transparent panel bg
    plot.background = element_rect(fill='transparent', color=NA), #transparent plot bg
    panel.grid.major = element_blank(), #remove major gridlines
    panel.grid.minor = element_blank(), #remove minor gridlines
    legend.background = element_rect(fill='transparent'), #transparent legend bg
    legend.box.background = element_rect(fill='transparent'))#transparent legend panel
g<-g+theme(text=element_text(family="Helvetica"),
         axis.title.x=element_blank(),
             axis.title.y=element_blank(), axis.text.x=element_text(size=5,angle=45),
         legend.position = "none")+scale_y_continuous(expand = c(0, 0))
Scale for 'y' is already present. Adding another scale for 'y', which will
replace the existing scale.
g

Version Author Date
0f7883c Alexander Haglund 2022-12-01

Suppl. Fig. 5d

full<-read.table("data/COLOC_MR_RESULTS//2022-10-25_FULL_MR_RES.txt")
full<-full[full$IVW<0.05,]
full$trait_gene<-paste0(full$GWAS,"_",full$gene)
tmp<-full[full$GWAS=="AD",]
tmp<-tmp[order(tmp$celltype),]
tmp$gene<-factor(tmp$gene,levels=unique(tmp$gene))
color_pal=ggsci::pal_nejm("default")(8)
colorvec<-c(Astrocytes=color_pal[1],
           Endothelial=color_pal[2],
           Excitatory=color_pal[3],
           Inhibitory=color_pal[4],Microglia=color_pal[5],
           ODC=color_pal[6],OPC=color_pal[7],Pericytes=color_pal[8])

g<-ggplot(tmp,aes(y=gene,x=IVW_beta,fill=celltype))+
geom_point(colour="black",shape=21,stroke=0.3,size=2)+
scale_fill_manual(values = colorvec)+
theme_classic()+
geom_vline(xintercept=0,linetype="dashed",size=0.3)+scale_x_continuous(limits=c(-0.6,0.6))
g2<-g+
theme(text=element_text(family="Helvetica",size=5),legend.text = element_text(family="Helvetica",size=5,face="bold"),
      legend.title=element_blank(),
      legend.spacing.y = unit(-1, 'cm'),axis.text.y=element_text(family="Helvetica",size=5,face="bold"))+guides(fill = guide_legend(byrow = TRUE))
g2

Version Author Date
0f7883c Alexander Haglund 2022-12-01

Suppl. Fig. 6

full<-read.table("data/COLOC_MR_RESULTS//2022-10-25_FULL_MR_RES.txt")
full<-full[full$IVW<0.05,]
full$trait_gene<-paste0(full$GWAS,"_",full$gene)

tmp<-full[full$GWAS=="AD",]
tmp<-tmp[order(tmp$celltype),]
tmp$gene<-factor(tmp$gene,levels=unique(tmp$gene))
color_pal=ggsci::pal_nejm("default")(8)
colorvec<-c(Astrocytes=color_pal[1],
           Endothelial=color_pal[2],
           Excitatory=color_pal[3],
           Inhibitory=color_pal[4],Microglia=color_pal[5],
           ODC=color_pal[6],OPC=color_pal[7],Pericytes=color_pal[8])


for(i in 1:length(unique(full$GWAS))){
    gwas<-unique(full$GWAS)[i]
    tmp<-full[full$GWAS %in% gwas,]
    len<-nrow(tmp)
    fig_height=3/20*len
    lims=max(abs(tmp$IVW_beta))+0.1
    
    g<-ggplot(tmp,aes(y=gene,x=IVW_beta,fill=celltype))+
    geom_point(colour="black",shape=21,stroke=0.3)+
    scale_fill_manual(values = colorvec)+
    theme_classic()+
    geom_vline(xintercept=0,linetype="dotted")+scale_x_continuous(limits=c(lims*-1,lims))
    g<-g+
    theme(text=element_text(size=5,family="Helvetica"),legend.title=element_blank(),
      axis.text.y=element_text(size=5,family="Helvetica"),axis.text.x=element_text(size=5,family="Helvetica"),
      legend.text = element_text(family="Helvetica",size=5,face="bold"))+ggtitle(gwas)
   print(g)
}

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

Version Author Date
dbf14b0 Alexander Haglund 2022-12-01

sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: Ubuntu 18.04.6 LTS

Matrix products: default
BLAS/LAPACK: /home/ah3918/anaconda3/envs/ODIN3/lib/libopenblasp-r0.3.12.so

locale:
 [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB.UTF-8        LC_COLLATE=en_GB.UTF-8    
 [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
 [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggrepel_0.9.1      ComplexUpset_1.3.3 UpSetR_1.4.0       reshape_0.8.9     
 [5] tidyr_1.2.1        cowplot_1.1.1      dplyr_1.0.9        ggsci_2.9         
 [9] viridis_0.6.2      viridisLite_0.4.1  ggplot2_3.3.6      workflowr_1.7.0   

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.2 xfun_0.32        bslib_0.4.0      purrr_0.3.4     
 [5] colorspace_2.0-3 vctrs_0.5.0      generics_0.1.3   htmltools_0.5.3 
 [9] yaml_2.3.5       utf8_1.2.2       rlang_1.0.6      jquerylib_0.1.4 
[13] later_1.2.0      pillar_1.8.1     glue_1.6.2       withr_2.5.0     
[17] DBI_1.1.3        plyr_1.8.7       lifecycle_1.0.3  stringr_1.4.0   
[21] munsell_0.5.0    gtable_0.3.1     evaluate_0.16    labeling_0.4.2  
[25] knitr_1.39       callr_3.7.1      fastmap_1.1.0    httpuv_1.6.5    
[29] ps_1.7.1         fansi_1.0.3      highr_0.9        Rcpp_1.0.9      
[33] promises_1.2.0.1 scales_1.2.1     cachem_1.0.6     jsonlite_1.8.0  
[37] farver_2.1.1     fs_1.5.2         gridExtra_2.3    digest_0.6.30   
[41] stringi_1.7.8    processx_3.7.0   getPass_0.2-2    rprojroot_2.0.3 
[45] cli_3.4.1        tools_4.0.5      magrittr_2.0.3   sass_0.4.2      
[49] patchwork_1.1.2  tibble_3.1.8     whisker_0.4      pkgconfig_2.0.3 
[53] ellipsis_0.3.2   assertthat_0.2.1 rmarkdown_2.15   httr_1.4.3      
[57] rstudioapi_0.13  R6_2.5.1         git2r_0.30.1     compiler_4.0.5